1oy
g

Copyright”

Oracle v. Google

William Fisher
February 2020

© 2020, William Fisher. The terms on which this case study may be used or modified are available at copyx.org/permission.

1oy
g

Copyright”
History

e Sun Microsystems develops Java, a software program that enables
programmers efficiently to develop applications (“apps”) and then
to allow those apps to run on a variety of hardware systems

e 2005: Google rejects license from Sun and develops Android

e Oracle acquires Sun and brings copyright infringement suit against
Google

e Jury finds that Google copied copyrightable expression but fails to
resolve fair use issue

e District Court grants judgment notwithstanding the verdict, finding
that declaring code and structure of Java are both not
copyrightable

e 2014: CAFC reverses, remands for retrial on fair use
 SCOTUS denies certiorari

e 2016: Jury finds fair use

e 2018: CAFC reverses, finding no fair use “as a matter of law”
 2019: SCOTUS grants certiorari

Copyright”

Structure of Java

* 30,000 “methods”

— Each contains a small amount of “declaring code”
and a large amount of “implementing code”

3000 “classes” of methods

* 166 “packages” of classes

1oy
s

. . . Copyright”
Declaring code v. implementing code

Int Math.maxPair(x,y) { (declaring code)

1f(x >= y) return x; (implementing
code)

else return vy;

VS.
Int Math.maxPair (x,vy) {
1f(y >= x) return y;

else return x;

Same declaring code, different implementations.

Source: Frank Xiao

Java 6 standard edition Package List

Based on the package descriptions available at http:// java.sun.com/javase/6/docs/api/

Essential Core Packages

javalang Classes that are fundamental to the design of the Java programming language.

javautil C the collections fr k, legacy collection classes, event model, date and time facilities,
internationalization, miscell utility cl (a string , a randc ber o).

javaio System input and output through data streams, serialization and the file system.

javamath Arbitrary-p ion integer (Bigh) and d 1 (BlgDeclmal) arithmetic.

java text For handling text, dates, bers, and ges in a pendent of natural languag

javatextspi Service provider classes for the classes in the java text package.

java.util concurrent
javautil concurrent atomic
java.util concurrent locks

Concurrency Support

Utility classes commonly useful in concurrent programming .

Toolkit supporting lock-free thread safe programming on single variables.
Framework for locking and o for conditions that is distinct from the
built-in hronization and it

API for accessing and processing data stored in a data source (e.g. a relational database).
Provides the API for server side data source access and processing from Java.

Standard interfaces and base classes for JDBC RowSet implementations.

Utility classes to allow serializable mappings betvteen SQL types and Java data types.
Third party vendor support for their impl of a sy

javax.sql

javax sql rowset

javax sql rowset.serial
Jjavax sql rowset.spi

SQL and Transactions

provider.

Classes for reading and writing the JAR (Java ARchive) file format,

Miscellaneous Ultilities

which is based on the standard ZIP file format with an optional manifest file.

javautil logging
javautil prefs
javautil regex
javautil spi
javautil zip
javax script

Classes and interfaces of the JavaTM 2 platform’s core logging facilities.

Allows applications to store and retrieve user and system preference and configuration data.
Classes for matching character
Service provider classes for the classes in the java.util package.

Classes for reading and writing the standard ZIP and GZIP file formats.
Scrpting API, defines Scripting Engines and provides framework for their use.

pattems specified by regular exp

£

Jjava.security
Java.security.acl
Jjava.security.cert

java security.interfaces

Jjava security.spec

javax crypto

javax crypto interfaces
Jjavax crypto.spec

javax security.auth

javax security.auth callback

Jjavax security.auth kerberos
javax security.auth login
javax security.auth spi
javax security.auth x500
Jjavax security.cert

javax security.sasl

javax xml crypto

javax xml crypto.dom

javax xml crypto.dsig

javax xml.crypto.dsig.dom
javax xml crypto.dsig keyinfo
javax xml crypto.dsig.spec
orgietf jgss

Security and Cryptography

Classes and interfaces for the security framework.

This package has been superseded by the java.security package.

Handling certificates, certificate revocation lists (CRLs), and certification paths.
Interfaces for generating RSA and DSA keys.

Classes/interfaces for key specifications and algorithm parameter specifications.
Classes and interfaces for cryptographic operations.

Interfaces for Diffie-Hellman keys as defined in RSA Laboratories’ PKCS #3.
Classes/interfaces for key specifications and algorithm parameter specifications.
This package provides a framework for authentication and authorization.

For application interaction, to display info (e.g. error and wamning messages)

or retrieve information (e.g. authentication data auch as usernames, passwords)
Utility classes related to the Kerb network auth
A pluggable authentication framework.

Interface to be used for impl ting pluggable
Classes to store X500 Principal and X500 Private Crendentials in a Subject.
Provides classes for public key certificates.

Contains class and interfaces for supporting SASL.

C 1 for XML cryptography.

DOM-specific classes for the javax xml crypto package.

Classes for generating and validating XML digital signatures.

DOM-specific classes for the javax xml crypto.dsig package.

Classes for parsing and p ing KeyInfo el and str

Parameter classes for XML digital signatures.

Unified API for using security services (e.g. authentication, data integrity,

data confidentiality) from various underlying security mechanisms like Kerberos.

) 4

dul

Defines buffers (data containers), and overviews other NIO packages.
Defines channels (connections to entities oﬁering T/O operations, e.g. files and sockets)

and
java nio channels spi
java nio charset
java nio charset.spi

I/O Facilities

1 s (for 11 d. non-block

o I/O operations).

Service-provider classes for the j javanio chz.nnels package.
Charsets, di
Service-provider classes for the java_nio charset package.

ders, and ders, for tr

g between bytes and Unicode chars.

Contract between UI components and assistive technology that provides access to them.

javax accessibility

UI Accessibility

java.awt
java.awt.color
java.awt.datatransfer
java.awt.dnd
java.awt.event
java.awt font
java.awt.geom
java.awtim
java.awt.im spi
java.awt.image
java.awt image renderable
java.awt.print

javax.swing

javax swing border

javax swing colorchooser
javax swing event

AWT and Swing GUI facilities

Classes for creating user interfaces and for painting graphics and images.
Classes for color spaces.

Interfaces and classes for transferring data between and within applications.
Drag and Drop transfer of info between two entities linked to GUI elements.
Interfaces and classes for dealing with events fired by AWT components.
Classes and interface relating to fonts.

Java 2D cl for defining/performing 2-D g y operations on objects.
Classes and interfaces for the input method framework.

Interfaces for input methods that can be used with any Java runtime environment.
Classes for creating and modifying images.

Classes and interfaces for producing rendering-ind d

) P £

Classes and interfaces for a general printing API.

“Lightweight” (all-Java) components that work similarly on all platforms.
Classes and interface for drawing specialized borders around a Swing component.
Classes and interfaces used by the JColorChooser component.

Events fired by Swing components.

javax swing filechooser Classes and interfaces used by the JFileChooser component.
javax swing plaf Provides Swing with its pluggable look-and-feel capabilities.
javax swing plaf basic User interface objects for the Basic look and feel.
javax swing plaf metal User interface objects for the (default) Java look and feel (once codenamed Metal).
javax swing plaf multi User interface objects that combine two or more look and feels.
javax swing plaf synth Synth is a skinnable look and feel in which all painting is delegated.
javax swing table Classes and interfaces for dealing with javax swing JTable.
javax swing text Classes and interfaces that deal with editable and noneditable text components.
javax swing text html Class HTMLEditorKit and supporting classes for creating HTML text editors.
javax swing text html parser ~ Default HTML parser, along with support classes.
javax swing text rtf Class (RTFEditorKit) for creating Rich-Text-Format text editors.
javax swing tree Classes and interfaces for dealing with javax swing JTree.
javax swing undo Support for undo/redo in applications such as text editors.
Image and Sound I/O
javax imageio The main package of the Java Image /O API.
javax imageio event For synchronous notification of events during the reading and writing of images.
javax imageio metadata Supports reading and writing metadata.

javax imageio plugins bmp
javax imageio plugins jpeg

Public classes used by the built-in BMP plug-in.
Classes supporting the built-in JPEG plug-in.

javax imageio spi Plug-in interfaces for readers, writers, tra ders, &ar registry.

javax imageio stream Supports low-level /O from files and streams.

javax sound midi Interfaces and cl for I/O, seqq ing, and synthesis of MIDI data.

javax sound midi spi Support for new MIDI devices, file readexs & wnters sound bank readers.

javax sound.sampled Interfaces and cl for capture, p and playback of led audio data.

javax sound sampled spi Support for new audio devices, sound file readers & wmers or audio format converters.

Print Service

javax print Principal classes and interfaces for the Java Print Service API.

javax print attribute Descnbmg types of Print Service attributes and their collection into attribute sets.

javax prnt attribute dard 1 for speclﬁc printing attributes.

javax print event event cl and i interfaces.
Produced by Dr Peter Dickman, Dept of Computing Science, Umvemtv of Glasgow, UK. v6.0 r1 PKG (2007/06)
See: http://www.dcs.gla.ac.uk/~pd/JavaRefCard/ Cor /sugg /feedback < to: JavaRefCard @ dcs., gla.ac uk
NB: The textual descriptions are lightly editted versions of those appearing on Sun’s Java website, reproduced without permi

Source: http://www.dcs.gla.ac.uk/~pd/JavaRefCard/private/packagelist.pdf

8 50 JR—— S :

: . X
ES java.lang java.util Copyl‘lght

AbstractSequentiallist | LinkedList (@ ©

Ver OO Stack

Properties

Source: http://docstore.mik.ua/orelly/java-ent/jnut/ch23_01.htm

@ conecle @) sevinkznble

Figure 23-1. The collection classes of the java.util package

© 2016, William Fisher. The terms on which this case study may be used or modified are available at copyx.org/permission.

: java.lang fava.util
—(4s+ GO)

| Objea —/“-ﬂ- QO H GrogoionColenior
o 00

Copyright”

Excoption : TooMamyListenersExcoption

RuntimeExceplion ConcurrentModificationException

EmptyStackException
java.security MissingResorcabxcoplion

Source: http://docstore.mik.ua/orelly/java-ent/jnut/ch23_01.htm

Permission NoSuchElementException

Figure 23-2. Other classes of the java.util package

1oy
g

, _ Copyright”
Sun’s Business Model

* Charge hardware manufacturers for the right to install
Java on their machines

* Grant royalty-free license to app developers

* Grant royalty-free licenses to developers of competing
platforms to use and modify Java so long as they make
public all modifications and permit competitors to use
those modifications for free

* Charge the developers of competing platforms who
wish to keep their modifications proprietary

— Condition: any modified version of Java must be
compatible with Java, so that apps written in Java can run
on it

— Licensees include Blackberry, Nokia, Savale, IBM, Oracle

1oy
g

Copyright”
Possible Bases of Liability

Google copied:

1) Structure of 37 (out of 166) Java “Packages”
and their components

2) Declaring Code for components of 37 Java
packages (7000 lines of source code)

3) Implementing Code for 9 functions within
those packages

1oy
g

Copyright”
Altai Test

(1) Abstraction
(2) Filtration
Unprotected Material includes:

(a) Elements dictated by efficiency

(b) Elements dictated by external factors
(i) mechanical specifications of the computer
(ii) compatibility requirements of other programs
(iii) computer manufacturers' design standards
(iv) demands of the industry being served
(v) widely accepted programming practices

(c) Elements taken from public domain
(3) Comparison

© 2016, William Fisher. The terms on which this case study may be used or modified are available at copyx.org/permission.

1oy
g

_ _ Copyright”
ldea & Expression in Plots

\5@

| ""«édFé\QT" T

© 2016, William Fisher. The terms on which this case study may be used or modified are available at copyx.org/permission.

Copyright”
Zechariah Chafee (1945)

“No doubt the line does lie somewhere between the
author's idea and the precise form in which he wrote
it down. | like to say that the protection covers the
"pattern” of the work ... the sequence of events, and
the development of the interplay of characters.”

© 2016, William Fisher. The terms on which this case study may be used or modified are available at copyx.org/permission.

1oy
g

Copyright”
Chiung Yao v. Yu Zheng PYRE

Beijing No. 3 Intermediate Court
Dec. 25, 2014

“A plot in a story might be either summarized as an abstract idea,
or be presented as a specific expression. Thus, a plot still needs to
be further analyzed to determine which part is an idea and what
part is expression. To distinguish between an idea and an
expression, one shall look at whether the plot in question is
abstract and general, or if it is specific enough so that it provides a
special aesthetic experience that is sufficient to identify the source
of the work. If the plot is specific to such an extent, then it can be
considered as an expression.”

© 2016, William Fisher. The terms on which this case study may be used or modified are available at copyx.org/permission.

1oy
g

. . Copyright”
Filtration

S
O
o
et
-
2
7 | [TT]E TPT T[T T T |
2.
ST e e rerTgre i

Elements dictated by efficiency

(i) mechanical specifications of the computer

(ii) compatibility requirements of other programs
(iii) computer manufacturers' design standards
(iv) demands of the industry being served

(v) widely accepted programming practices

Copyright”

; |

O

- | |

2

A |

‘| T T[T
o

5 B L

Elements dictated by external factors

1oy
g

Copyright”

Filtration
S
Q
= |

I

s |l
A I
Al T T T
I I IR O R L M

Elements taken from public domain

1oy
g

. Copyright”
Comparison

Elements of defendant’ s program

Protected Parts of Plaintiff’ s program

1oy
s

1)
2)

3)
4)
5)

6)

7)
8)
9)
10)

Possible Arguments for Google

Lack of Originality

Declaring code is not
protected “expression”

Merger
Scene-a-faire

No protection for “words
and short phrases”

Method of Operation —
102(b)

De minimis copying
Fair Use
Privilege for Interoperability

Copyright protection for
software is bad policy

Copyright”
CAFC (2014), cert denied 2015
Oracle exercised plenty of
creativity

Apply Altai test to differentiate
idea & expression

Alternative ways of writing the
source code were readily
available to G

SAF analysis applies at time of
creation

The arrangement of words is
protected

102(b) merely restates the
idea/expression distinction

Copying was extensive

Remand for new trial on fair
use

Interoperability may be
relevant to fair use

Policy is for Congress, not the
courts

© 2018, William Fisher. The terms on which this case study may be used or modified are available at copyx.org/permission.

1oy
s

1)
2)

3)
4)
5)

6)

7)
8)
9)
10)

Possible Arguments for Google

Lack of Originality

Declaring code is not
protected “expression”

Merger
Scene-a-faire

No protection for “words
and short phrases”

Method of Operation —
102(b)

De minimis copying
Fair Use
Privilege for Interoperability

Copyright protection for
software is bad policy

Copyright”

Retrial, solely on the issue of fair use

Jury verdict, May 2016: Fair Use

Oracle appeals; oral argument, Dec. 7, 2017
CAFC rejects fair use (March 2018)

8)

9)

\

Remand for new trial on fair
use

Interoperability may be
relevant to fair use

© 2016, William Fisher. The terms on which this case study may be used or modified are available at copyx.org/permission.

Possible Arguments for Google

1)
2)

3)
4)
5)

6)

7)
8)
9)
10)

Lack of Originality

Declaring code is not
protected “expression”

Merger
Scene-a-faire

No protection for “words
and short phrases”

Method of Operation —
102(b)

De minimis copying
Fair Use
Privilege for Interoperability

Copyright protection for
software is bad policy

Copyright”
CAFC (2018)
Oracle exercised plenty of
creativity

Apply Altai test to differentiate
idea & expression

Alternative ways of writing the
source code were readily
available to G

SAF analysis applies at time of
creation

The arrangement of words is
protected

102(b) merely restates the
idea/expression distinction

Copying was extensive

No fair use as a matter of law
(applying CA9 law)

On remand, Google abandons
its reliance on interoperability

Policy is for Congress, not the
courts

© 2018, William Fisher. The terms on which this case study may be used or modified are available at copyx.org/permission.

Copyright”

Policy Perspectives

1oy
g

. X
Amicus Brief by Computer Scientists ~ Copyright
The freedom to reimplement and extend existing APIs has been the key to
competition and progress in the computer field—both hardware and software. It
made possible the emergence and success of many robust industries we now take for
granted—such as industries for mainframes, PCs, peripherals (storage, modemes,
printers, sound cards, etc.), workstations/servers, and so on—by ensuring that
competitors could challenge established players and advance the state of the art.

Thus, excluding APIs from copyright protection has been essential to the
development of modern computers and the Internet. For example, the widespread
availability of diverse, cheap, and customizable personal computers owes its
existence to the lack of copyright on the specification for IBM’s Basic Input/Output
System (BIOS) for the PC. Companies such as Compaq and Phoenix reimplemented
IBM’s BIOS without fear of copyright claims, making PC clones possible. And the open
nature of APIs was essential to many modern computing developments, including
those of operating systems such as UNIX, programming languages such as “C”, the
Internet’s network protocols, and cloud computing.

The uncopyrightable nature of APIs spurs the creation of software that otherwise
would not have been written. When programmers can freely reimplement or reverse
engineer an APl without the need to negotiate a costly license or risk a lawsuit, they
can create compatible software that the interface’s original creator might never have
envisioned or had the resources to create. Moreover, compatible APIs enable people
to switch platforms and services freely, and to find software that meets their needs
regardless of what browser or operating system they use. Without the compatibility
enabled by the open nature of APIs, consumers could be forced to leave their data
behind when they switch to a new service.

1oy
g

Amicus Brief by Business Software Alliance Copyright”

[The] growth and innovation [of the software industry in the
United States] cannot continue in the absence of clear rules
protecting software as copyrighted works. Copyright law must
ensure that creativity is rewarded and that intellectual property
cannot be misappropriated by those unwilling to pay for the use
of another’s originality. If developers cannot receive protection
for the works they create — or are uncertain about their prospects
for protection — then their incentive to create will be removed or
reduced, depriving the public and the economy of the benefits of
a vibrant software industry.

The decision of the district court in this case threatens to disrupt
the well-settled law that has fostered this growth. The particular
subject matter here is the copyrightability of Oracle’s Java API, but
the district court’s decision suggests a limited and rigid view of
software copyrightability that could have ramifications for all
software. The decision thus implicates a major sector of the
economy, as well as the benefits we all derive from innovative
software at work, at home, and at school.

1oy
g

Copyright”

Microsoft amicus brief

[The District Court’s decision denying copyright protection for APIs] sets a
dangerous and ill-advised precedent. Under established precedent,
sufficiently original software packages like those in the Java platform
certainly may be copyrightable, preventing free-riders from replicating
their precise structure and suite of features. Yet the District Court’s
decision leaves no room for that result -- not only in this case but on
virtually any facts. To be clear, amici do not suggest that those elements of
every computer program are copyrightable, or that copyright in Oracle’s
Java platform would prevent secondcomers from using the platform to
foster further software development or create competing products. Even
for copyrightable platforms and software packages, the determination
whether infringement has occurred must take into account doctrines like
fair use that protect the legitimate interests of follow-on users to
innovate. But the promise of some threshold copyright protection for
platforms like Java specifically and other elements of computer software
generally is a critically important driver of research and investment by
companies like amici and rescinding that promise would have sweeping
and harmful effects throughout the software industry.

Google’s strategy Copyright”

If we gave it away, how can we ensure we get to benefit from it?

Create policies that allow us to drive the standard

+ Be the sheppards of the standard we created — we are in the lead because of our
head start. Maintaining the pace will guarantee our lead.

* Do not develop in the open. Instead, make source code available after innovation
is complete

+ Lead device concept: Give early access to the software to partners who build and
distribute devices to our specification (ie, Motorola and Verizon). They get a non-
contractual tme to market advantage and in return they align to our standard.

* We created the first app store for Android and it got critical mass quickly. The store
now has value and partners want access to it because of the number of apps
available.

« Own the ecasystem we enabled: Evolve the app store. Set the rules. Define
developer monetization opportunity. Train developers on our APls. Give
developers one place where they get wide distribution. Provide a global
opportunity & payment system. Help developers get distribution via revshare with
operators. Extend app store to other devices and other market segments (ie,

Google TV)

Takeaway: Provide incentives -- carrots rather than sticks
Google
bl] Pooperistary 4

2

1oy
g

Peter Menell (2018) Copyright”
“As | explored in my early scholarship, the optimal design of intellectual
property protection for addressing the network externality challenge is to
protect the functional features of computer software under a limited utility
patent-type regime, although with shorter duration and more flexibility to gain
access to platforms that become widely adopted. | advocated a genericide-
type doctrine which could protect emerging platforms but give way to broader
access when a platform becomes dominant and risks affording the proprietor
the ability to leverage that control to hinder cumulative innovators. At the
same time, | opposed copyright protection for the functional and
interoperable aspects of computer technology to avoid large returns to first
movers that win a standards battle without offering significant technological
innovation and to afford competitors to use and build on unpatented methods
of operation.... The experience of the past several decades have reinforced the
insights of that earlier research. Although copyright law has a valuable role to
play in protecting computer software, that role must be limited, especially
with regard to network and other functional features of computer software....”

1oy
g

Peter Menell (2018) Copyright”

“We are left with the question of whether the lack of direct copyright protection for
APl design — whose interface must be exposed to the public in most commercial
circumstances to be effective— creates an undesirable lacuna in intellectual
property protection. Are incentives to innovate platforms inadequate without
copyright protection for APl design?

“Utility patent law provides protection for novel, non-obvious, and adequately
disclosed advances in computer systems, processes, and interface design. It arguably
overprotects interface specifications for an excessive duration. Thus, adding robust
copyright protection for APl design would further undermine realization of network
externalities and hamper cumulative innovation....

Thus, looking back over the past three decades, the need for copyright protection to
address the dual public goods/network externality problem faced by software
developers has substantially waned due to several factors. The emergence and
development of the Internet has enabled software developers to distribute software
and services at very low cost. Furthermore, developers can protect their code
through cloud service models. The Internet has also opened up and expanded the
effectiveness of e-commerce and advertising-based business models. More robust
copyright protection for APl design would likely have stifled platform innovation and
competition. Thus, a parsimonious approach to copyright protection of computer
software remains the best policy choice.”

Menell’s contribution Copyright

* |P protection for APIs has an Implied: present
undesirable side effect (in vaItIer Oflthe
addition to the undesirable side Werare 1osses

. . associated with
effect of all IP rights): forfeiture clower innovation
of the welfare gains associated in platforms is less
with network externalities (cf. than the present

Ta B value of potential
Boudin in Lotus) o ot poten
. . . weiltare gains rrom
— However, this undesirable side networkg
effect is offset, to some degree, by externalities
the tendency of network
externalities to retard paradigm
shifts in platform technologies

 The need for IP to incentivize |
. . ith t to APIs Problems:

Innovation with respec (1) This is just a guess;
has diminished because of the (2) The alternative business
availability of alternative models have social costs
business models that may exceed the

disadvantages of IP

1oy
g

O pt | ons Copyrightx

* Copyright Protection; no fair use (Oracle’s
preference)

* “Genericide” (Menell’s early proposal)

— Modest IP protection initially, but it evaporates once a
platform becomes dominant

* Regulatory overlay (cf. management of SEPs)

— |P owner must disclose copyrights (and patents) on
APls — and announce terms on which they will be
licensed

* |P owner and successors are bound by those commitments

— FRAND licensing is mandatory (potentially relevant to
damages on remand)

* Copyright Protection; fair use, determined on a
case-by-case basis (rejected by CAFC)

* No copyright protection (Google’s preference)

