
Oracle v. Google

William Fisher
February 2020

© 2020, William Fisher.  The terms on which this case study may be used or modified are available at copyx.org/permission.



History
• Sun Microsystems develops Java, a software program that enables 

programmers efficiently to develop applications (“apps”) and then 
to allow those apps to run on a variety of hardware systems

• 2005:  Google rejects license from Sun and develops Android
• Oracle acquires Sun and brings copyright infringement suit against 

Google
• Jury finds that Google copied copyrightable expression but fails to 

resolve fair use issue
• District Court grants judgment notwithstanding the verdict, finding 

that declaring code and structure of Java are both not 
copyrightable

• 2014:  CAFC reverses, remands for retrial on fair use
• SCOTUS denies certiorari
• 2016:  Jury finds fair use
• 2018:  CAFC reverses, finding no fair use ”as a matter of law”
• 2019:  SCOTUS grants certiorari



Structure of Java

• 30,000 “methods”
– Each contains a small amount of “declaring code” 

and a large amount of “implementing code”
• 3000 “classes” of methods
• 166 “packages” of classes



Declaring code v. implementing code
Int Math.maxPair(x,y) { (declaring code)

if(x >= y) return x; (implementing 
code)

else return y;
} 

vs.
Int Math.maxPair(x,y) { 

if(y >= x) return y;
else return x;

}
Same declaring code, different implementations.

Source:  Frank Xiao



Source:  http://www.dcs.gla.ac.uk/~pd/JavaRefCard/private/packagelist.pdf



© 2016, William Fisher.  The terms on which this case study may be used or modified are available at copyx.org/permission.

So
ur

ce
:  

ht
tp

://
do

cs
to

re
.m

ik
.u

a/
or

el
ly/

ja
va

-e
nt

/jn
ut

/c
h2

3_
01

.h
tm



So
ur

ce
:  

ht
tp

://
do

cs
to

re
.m

ik
.u

a/
or

el
ly/

ja
va

-e
nt

/jn
ut

/c
h2

3_
01

.h
tm



Sun’s Business Model
• Charge hardware manufacturers for the right to install 

Java on their machines
• Grant royalty-free license to app developers
• Grant royalty-free licenses to developers of competing 

platforms to use and modify Java so long as they make 
public all modifications and permit competitors to use 
those modifications for free

• Charge the developers of competing platforms who 
wish to keep their modifications proprietary
– Condition:  any modified version of Java must be 

compatible with Java, so that apps written in Java can run 
on it

– Licensees include Blackberry, Nokia, SavaJe, IBM, Oracle



Possible Bases of Liability

Google copied:
1) Structure of 37 (out of 166) Java “Packages” 

and their components
2) Declaring Code for components of 37 Java 

packages (7000 lines of source code)
3) Implementing Code for 9 functions within 

those packages



Altai Test
(1) Abstraction
(2) Filtration

Unprotected Material includes:
(a) Elements dictated by efficiency
(b) Elements dictated by external factors

(i) mechanical specifications of the computer
(ii) compatibility requirements of other programs 
(iii) computer manufacturers' design standards
(iv) demands of the industry being served
(v) widely accepted programming practices

(c) Elements taken from public domain
(3) Comparison

© 2016, William Fisher.  The terms on which this case study may be used or modified are available at copyx.org/permission.



Idea & Expression in Plots

Ide
a

Exp
res
sio
n

© 2016, William Fisher.  The terms on which this case study may be used or modified are available at copyx.org/permission.



Zechariah Chafee  (1945)

• “No doubt the line does lie somewhere between the 
author's idea and the precise form in which he wrote 
it down. I like to say that the protection covers the 
"pattern" of the work ... the sequence of events, and 
the development of the interplay of characters.”

© 2016, William Fisher.  The terms on which this case study may be used or modified are available at copyx.org/permission.



Chiung Yao v. Yu Zheng
Beijing No. 3 Intermediate Court

Dec. 25, 2014

“A plot in a story might be either summarized as an abstract idea, 
or be presented as a specific expression. Thus, a plot still needs to 
be further analyzed to determine which part is an idea and what 
part is expression. To distinguish between an idea and an 
expression, one shall look at whether the plot in question is 
abstract and general, or if it is specific enough so that it provides a 
special aesthetic experience that is sufficient to identify the source 
of the work. If the plot is specific to such an extent, then it can be 
considered as an expression.” 

© 2016, William Fisher.  The terms on which this case study may be used or modified are available at copyx.org/permission.



Id
ea

Ex
pr

es
si

on

Elements dictated by efficiency

Filtration



Id
ea

Ex
pr

es
si

on

Elements dictated by external factors

(i) mechanical specifications of the computer
(ii) compatibility requirements of other programs 
(iii) computer manufacturers' design standards
(iv) demands of the industry being served
(v) widely accepted programming practices



Id
ea

Ex
pr

es
si

on

Elements taken from public domain

Filtration



Comparison

Protected Parts of Plaintiff’s program

Elements of defendant’s program



Possible Arguments for Google

1) Oracle exercised plenty of 
creativity

2) Apply Altai test to differentiate 
idea & expression

3) Alternative ways of writing the 
source code were readily 
available to G

4) SAF analysis applies at time of 
creation

5) The arrangement of words is 
protected

6) 102(b) merely restates the 
idea/expression distinction

7) Copying was extensive
8) Remand for new trial on fair 

use
9) Interoperability may be 

relevant to fair use
10) Policy is for Congress, not the 

courts

© 2018, William Fisher.  The terms on which this case study may be used or modified are available at copyx.org/permission.

1) Lack of Originality
2) Declaring code is not 

protected “expression”
3) Merger
4) Scene-a-faire
5) No protection for “words 

and short phrases”
6) Method of Operation –

102(b)
7) De minimis copying
8) Fair Use
9) Privilege for Interoperability
10) Copyright protection for 

software is bad policy

CAFC (2014), cert denied 2015



Possible Arguments for Google

1) Oracle exercised plenty of 
creativity

2) Apply Altai test to differentiate 
idea & expression

3) Alternative ways of writing the 
source code were readily 
available to G

4) SAF analysis applies at time of 
creation

5) The arrangement of words is 
protected

6) 102(b) merely restates the 
idea/expression distinction

7) Copying was extensive
8) Remand for new trial on fair 

use
9) Interoperability may be 

relevant to fair use
10) Policy is for Congress, not the 

courts

© 2016, William Fisher.  The terms on which this case study may be used or modified are available at copyx.org/permission.

1) Lack of Originality
2) Declaring code is not 

protected “expression”
3) Merger
4) Scene-a-faire
5) No protection for “words 

and short phrases”
6) Method of Operation –

102(b)
7) De minimis copying
8) Fair Use
9) Privilege for Interoperability
10) Copyright protection for 

software is bad policy

CAFC (2014)

Retrial, solely on the issue of fair use
Jury verdict, May 2016:  Fair Use
Oracle appeals; oral argument, Dec. 7, 2017
CAFC rejects fair use (March 2018)



Possible Arguments for Google

1) Oracle exercised plenty of 
creativity

2) Apply Altai test to differentiate 
idea & expression

3) Alternative ways of writing the 
source code were readily 
available to G

4) SAF analysis applies at time of 
creation

5) The arrangement of words is 
protected

6) 102(b) merely restates the 
idea/expression distinction

7) Copying was extensive
8) No fair use as a matter of law 

(applying CA9 law)
9) On remand, Google abandons 

its reliance on interoperability
10) Policy is for Congress, not the 

courts

© 2018, William Fisher.  The terms on which this case study may be used or modified are available at copyx.org/permission.

1) Lack of Originality
2) Declaring code is not 

protected “expression”
3) Merger
4) Scene-a-faire
5) No protection for “words 

and short phrases”
6) Method of Operation –

102(b)
7) De minimis copying
8) Fair Use
9) Privilege for Interoperability
10) Copyright protection for 

software is bad policy

CAFC (2018)



Policy Perspectives



Amicus Brief by Computer Scientists
The freedom to reimplement and extend existing APIs has been the key to 
competition and progress in the computer field—both hardware and software. It 
made possible the emergence and success of many robust industries we now take for 
granted—such as industries for mainframes, PCs, peripherals (storage, modems, 
printers, sound cards, etc.), workstations/servers, and so on—by ensuring that 
competitors could challenge established players and advance the state of the art.
Thus, excluding APIs from copyright protection has been essential to the 
development of modern computers and the Internet. For example, the widespread 
availability of diverse, cheap, and customizable personal computers owes its 
existence to the lack of copyright on the specification for IBM’s Basic Input/Output
System (BIOS) for the PC. Companies such as Compaq and Phoenix reimplemented
IBM’s BIOS without fear of copyright claims, making PC clones possible. And the open 
nature of APIs was essential to many modern computing developments, including 
those of operating systems such as UNIX, programming languages such as “C”, the 
Internet’s network protocols, and cloud computing.
The uncopyrightable nature of APIs spurs the creation of software that otherwise 
would not have been written. When programmers can freely reimplement or reverse 
engineer an API without the need to negotiate a costly license or risk a lawsuit, they 
can create compatible software that the interface’s original creator might never have 
envisioned or had the resources to create. Moreover, compatible APIs enable people 
to switch platforms and services freely, and to find software that meets their needs 
regardless of what browser or operating system they use. Without the compatibility 
enabled by the open nature of APIs, consumers could be forced to leave their data 
behind when they switch to a new service.



Amicus Brief by Business Software Alliance

[The] growth and innovation [of the software industry in the 
United States] cannot continue in the absence of clear rules 
protecting software as copyrighted works. Copyright law must 
ensure that creativity is rewarded and that intellectual property 
cannot be misappropriated by those unwilling to pay for the use 
of another’s originality. If developers cannot receive protection 
for the works they create – or are uncertain about their prospects 
for protection – then their incentive to create will be removed or 
reduced, depriving the public and the economy of the benefits of 
a vibrant software industry.
The decision of the district court in this case threatens to disrupt 
the well-settled law that has fostered this growth. The particular 
subject matter here is the copyrightability of Oracle’s Java API, but 
the district court’s decision suggests a limited and rigid view of 
software copyrightability that could have ramifications for all 
software. The decision thus implicates a major sector of the 
economy, as well as the benefits we all derive from innovative 
software at work, at home, and at school.



Microsoft amicus brief
[The District Court’s decision denying copyright protection for APIs] sets a 
dangerous and ill-advised precedent. Under established precedent, 
sufficiently original software packages like those in the Java platform 
certainly may be copyrightable, preventing free-riders from replicating 
their precise structure and suite of features.  Yet the District Court’s 
decision leaves no room for that result -- not only in this case but on 
virtually any facts. To be clear, amici do not suggest that those elements of 
every computer program are copyrightable, or that copyright in Oracle’s 
Java platform would prevent secondcomers from using the platform to 
foster further software development or create competing products. Even 
for copyrightable platforms and software packages, the determination 
whether infringement has occurred must take into account doctrines like 
fair use that protect the legitimate interests of follow-on users to 
innovate. But the promise of some threshold copyright protection for 
platforms like Java specifically and other elements of computer software 
generally is a critically important driver of research and investment by 
companies like amici and rescinding that promise would have sweeping 
and harmful effects throughout the software industry.



Google’s strategy



Peter Menell (2018)
“As I explored in my early scholarship, the optimal design of intellectual 
property protection for addressing the network externality challenge is to 
protect the functional features of computer software under a limited utility 
patent-type regime, although with shorter duration and more flexibility to gain 
access to platforms that become widely adopted.  I advocated a genericide-
type doctrine which could protect emerging platforms but give way to broader 
access when a platform becomes dominant and risks affording the proprietor 
the ability to leverage that control to hinder cumulative innovators. …. At the 
same time, I opposed copyright protection for the functional and 
interoperable aspects of computer technology to avoid large returns to first 
movers that win a standards battle without offering significant technological 
innovation and to afford competitors to use and build on unpatented methods 
of operation…. The experience of the past several decades have reinforced the 
insights of that earlier research. Although copyright law has a valuable role to 
play in protecting computer software, that role must be limited, especially 
with regard to network and other functional features of computer software….” 



Peter Menell (2018)
“We are left with the question of whether the lack of direct copyright protection for 
API design — whose interface must be exposed to the public in most commercial 
circumstances to be effective— creates an undesirable lacuna in intellectual 
property protection. Are incentives to innovate platforms inadequate without 
copyright protection for API design? 
“Utility patent law provides protection for novel, non-obvious, and adequately 
disclosed advances in computer systems, processes, and interface design. It arguably 
overprotects interface specifications for an excessive duration. Thus, adding robust 
copyright protection for API design would further undermine realization of network 
externalities and hamper cumulative innovation…. 
Thus, looking back over the past three decades, the need for copyright protection to 
address the dual public goods/network externality problem faced by software 
developers has substantially waned due to several factors. The emergence and 
development of the Internet has enabled software developers to distribute software 
and services at very low cost. Furthermore, developers can protect their code 
through cloud service models. The Internet has also opened up and expanded the 
effectiveness of e-commerce and advertising-based business models. More robust 
copyright protection for API design would likely have stifled platform innovation and 
competition. Thus, a parsimonious approach to copyright protection of computer 
software remains the best policy choice. ” 



Menell’s contribution
• IP protection for APIs has an 

undesirable side effect (in 
addition to the undesirable side 
effect of all IP rights):  forfeiture 
of the welfare gains associated 
with network externalities (cf. 
Boudin in Lotus)
– However, this undesirable side 

effect is offset, to some degree, by 
the tendency of network 
externalities to retard paradigm 
shifts in platform technologies

• The need for IP to incentivize 
innovation with respect to APIs 
has diminished because of the 
availability of alternative 
business models

Implied:  present 
value of the 
welfare losses 
associated with 
slower innovation 
in platforms is less 
than the present 
value of potential 
welfare gains from 
network 
externalities

Problems:
(1) This is just a guess;
(2) The alternative business 

models have social costs 
that may exceed the 
disadvantages of IP



Options
• Copyright Protection; no fair use (Oracle’s 

preference)
• “Genericide” (Menell’s early proposal)
– Modest IP protection initially, but it evaporates once a 

platform becomes dominant
• Regulatory overlay (cf. management of SEPs)
– IP owner must disclose copyrights (and patents) on 

APIs – and announce terms on which they will be 
licensed
• IP owner and successors are bound by those commitments

– FRAND licensing is mandatory (potentially relevant to 
damages on remand)

• Copyright Protection; fair use, determined on a 
case-by-case basis (rejected by CAFC)

• No copyright protection (Google’s preference)


